Some Science Aspects of Wide-Area Data Transport

<u>Nagi Rao</u> <u>raons@ornl.gov</u> Oak Ridge National Laboratory

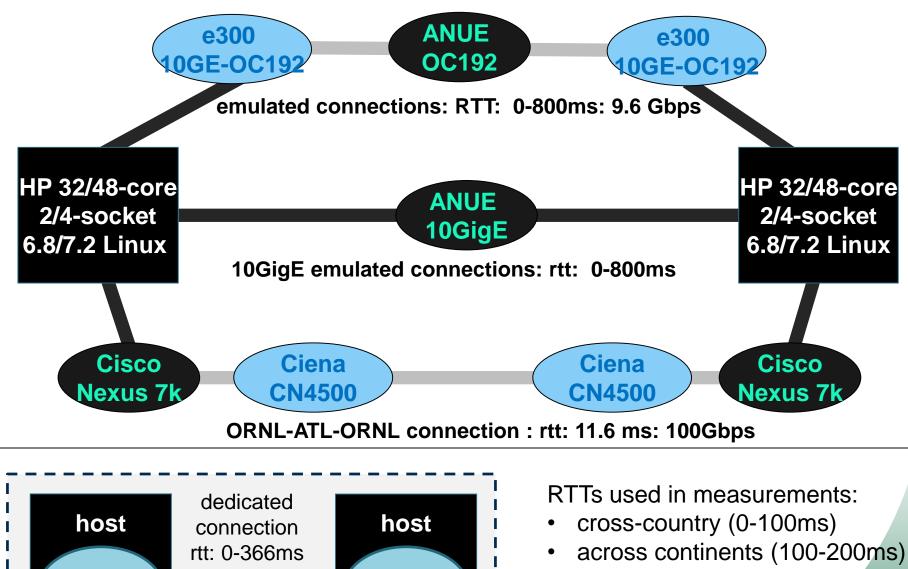
Mini-Symposium on Data over Distance: Convergence of Networking, Storage, Transport, and Software Frameworks July 19, 2018 Hanover, MD

> Sponsored by U.S. Department of Energy U.S. Department of Defense

Outline

- Background
- Through Profiles of Infrastructures
 - Memory and File transfers
 - Convexity and Utilization
- Profile Estimation: Machine Learning
 - Generalization
- Cyber-Physical Aspects: Game Theory
 - Extension using LNet
- Looking Into Future

Collaborators: S. Sen, Q. Liu (ORNL); Foster, Z. Liu, R. Kettimuthu (ANL); D. Katramatos (BNL), B. Settleymyer, H. B. Chen (LANL); D. Towsley, G. Vardoyan (UMASS); F. He (Texas A&M); J. Zhuang (UBuffalo); C.Y.T Ma (Hong Kong); D. Yau (Singapore)


Background

Big-data science and commercial data transport across networks

- Science codes on supercomputers generate large data sets to be transferred to remote storage sites for archival and post-analysis
- Science facilities generate large datasets to be transported to remote supercomputing centers
 - Spallation Neutron Sources at Oak Ridge National Laboratory
- Commercial big data and distributed information systems
 - Google B4 SDN dedicated networks
- Dedicated Connections
 - Increasing deployments and availability
 - DOE OSCARS. Google B4
 - Desirable features: dedicated capacity and low loss rates
 - Expectations for transport methods: Simple and predictable flow dynamics
 - Surprisingly, show much more complex profiles and dynamics
 - concave-convex profile vs. convex profile from literature
 - rich dynamics lead to lower performance

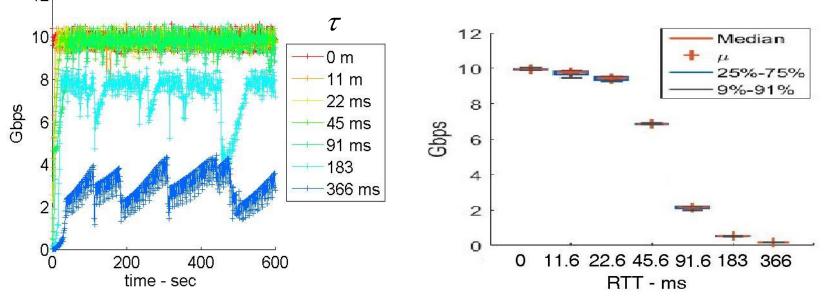
ORNL Testbed : Emulated and Physical Connections

server

client

U. S. Department of Energy

10/9.6 Gbps


M

across globe (366ms)

TCP Memory Throughput Measurements: Uniform Nodes

Throughput traces and profiles: qualitatively similar across TCP variants CUBIC (Linux default), Hamilton TCP, Scalable TCP

Trace:

 $\theta(\tau, t)$: throughput at time *t* over connection with RTT τ

As expected:

- profile: decreases with RTT
- trace: sort of periodic in time

Managed by UT-Battelle for the U. S. Department of Energy

Throughput Profiles: over period T_{o}

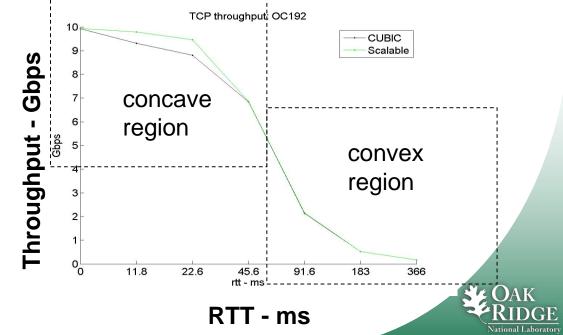
$$\Theta_O(\tau) = \frac{1}{T_O} \int_0^{T_O} \theta(\tau, t) dt$$

Not expected:

- profile: concave at lower RTT
- trace: significant variations
 - larger at higher RTT

TCP Throughput Profiles

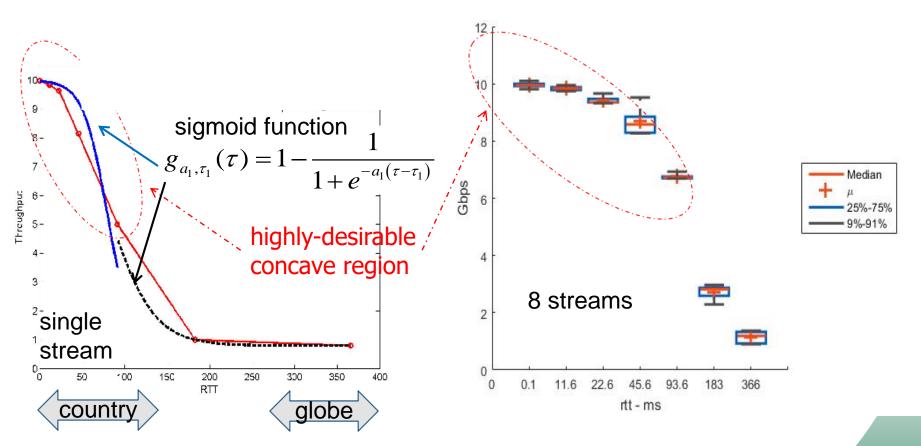
- Most common TCP throughput profile
 - convex function of rtt
 - example, Mathis et al (1997)


throughput at rtt au loss-rate p

$$\Theta_M(\tau) = \frac{MSS * k}{\tau \sqrt{p}}$$

Function f(x) is concave over interval I: for $\tau_1 < \tau_2 \in I$ for all $x \in [0,1]$ $f(x\tau_1 + (1-x)\tau_2)$ $\geq xf(\tau_1) + (1-x)f(\tau_2)$

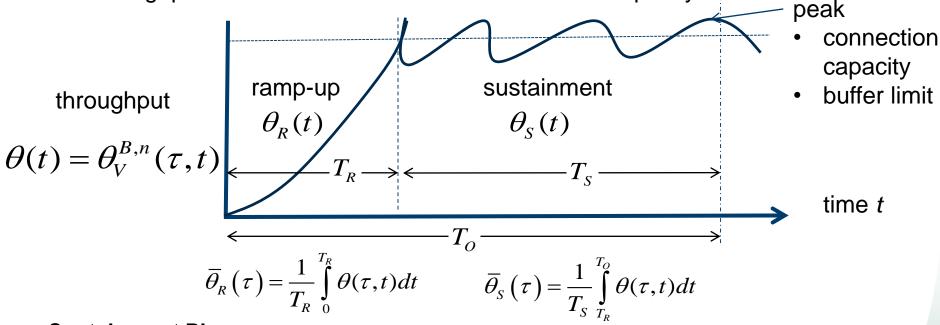
Informally, function is above the linear interpolation Convex: use \leq in place of \geq


- Observed Dual-mode profiles: throughput measurement
 - CUBIC, STCP, HTCP Smaller RTT
 - Concave region
 - Larger RTT
 - Convex region

TCP Profiles: memory transfer

Concave-convex regions – confirmed by sigmoid fits: 10Gbps dedicated connections: CUBIC congestion control module- default under Linux

• TCP buffers tuned for 200ms rtt: 1-10 parallel streams


RTT: cross-country (0-100ms), cross-continents (100-200ms), across globe(366ms)

Basic Throughput Model

Throughput trace of *n* streams of TCP version *V* with buffer size *B*: $\theta_V^{B,n}(\tau,t)$

Ramp-up Phase

- Sustainment Phase
 - Throughput is maintained around a peak value $C_{ au}^{B,n}$
 - TCP congestion avoidance
 - $-\theta_{s}(t)$ time trace of throughput during sustainment

$$\Theta_O(\tau) = \frac{1}{T_O} \int_0^{T_O} \theta(\tau, t) dt$$

Faster than Slow Start and Multiple TCP flows:

Expand Concavity

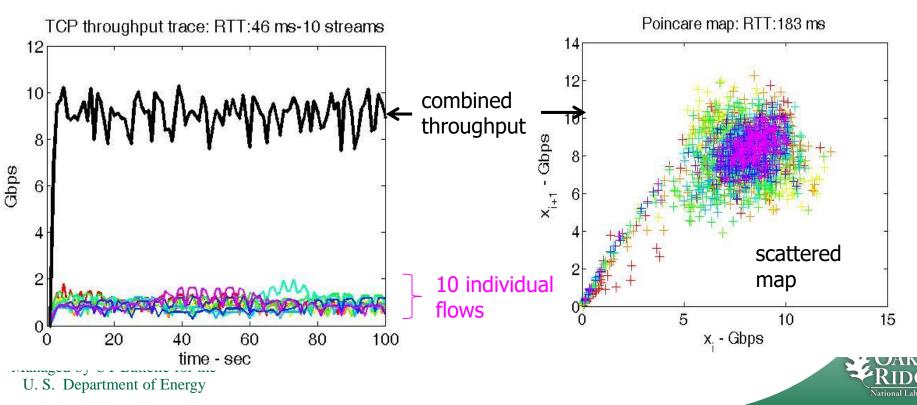
Faster than Slow Start:

More increases than slow start: $n_k = \tau^{\epsilon_\tau} \log C$ $\epsilon_{\tau} > 0, \tau > 1$ $T_R = \tau n_k = \tau^{1+\epsilon_\tau} \log C$ data sent: $1 + 2 + \dots + 2^{n_k} = 2^{n_k+1} - 1 = 2^{1+\tau^{\epsilon_\tau}} C - 1$ $\overline{\theta}_R \approx \frac{2^{1+\tau^{n_k}} C}{\tau^{1+\epsilon_\tau} \log C}$

Average Throughput:

$$\Theta_{O}(\tau) = \frac{2^{1+\tau^{\epsilon_{\tau}}}C}{T_{O}} + C\left[\frac{T_{O} - \tau^{1+\epsilon_{\tau}}\log C}{T_{O}}\right]$$
$$\frac{d\Theta_{O}}{d\tau} = -\frac{(1+\epsilon_{\tau})\tau^{\epsilon_{\tau}}C\log C}{T_{O}}$$
decreasing function of τ

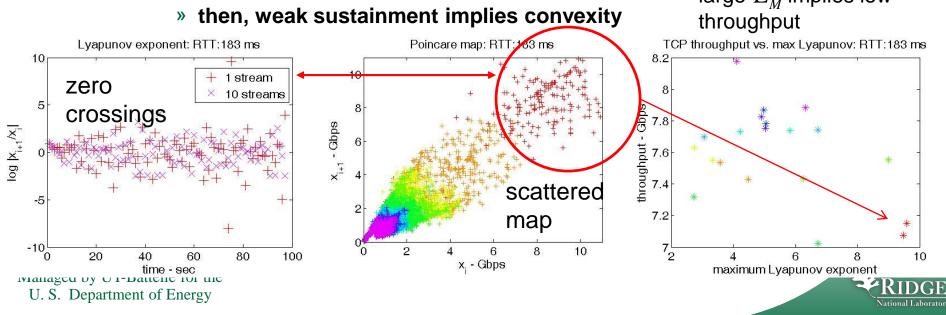
Managed by UT-Battelle for the U. S. Department of Energy


implies concavity of $\Theta_o(\tau)$

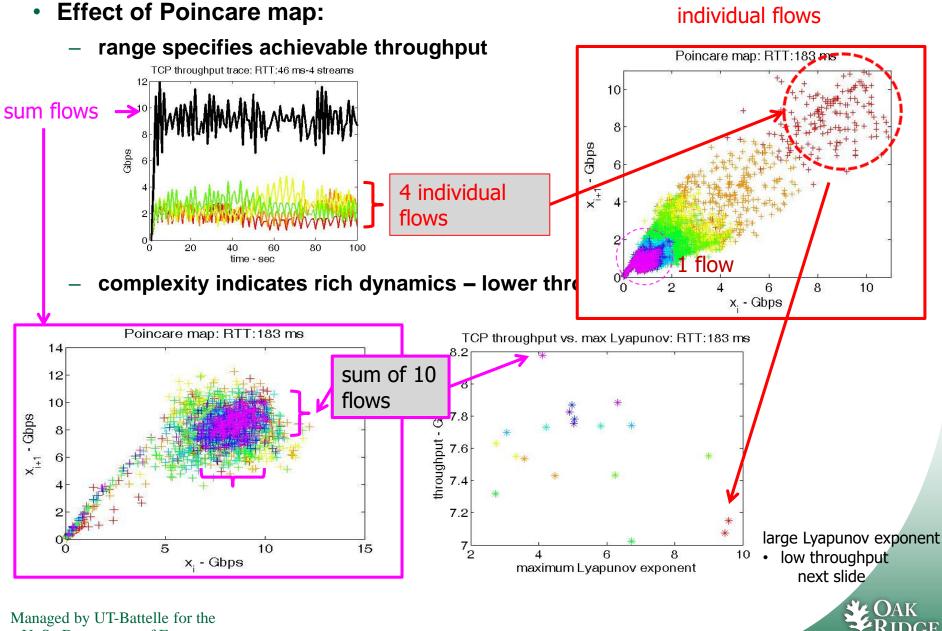
Poincare Map

Well-Known tool for analyzing time series – used in chaos theory

- Poincare map $M: \mathfrak{R}^d \to \mathfrak{R}^d$
 - Time series: $X_0, X_1, \cdots, X_i, X_{i+1}, \cdots$
 - generated as $X_{i+1} = M(X_i)$
- Effect of Poincare map:
 - range specifies achievable throughput
 - complexity indicates rich dynamics lower throughput and narrow concave



Lyapunov Exponent: Stability and Concavity


• Log derivative of Poincare map

$$L_M = \ln \left| \frac{dM}{dX} \right|$$

- Provides critical insights into dynamics
 - Stable trajectories: $L_M < 0$
 - Chaotic trajectories: $L_M > 0$
 - indicate exponentially diverging trajectories with small state variations
 - larger exponents indicate large deviations
 - protocols are operating at peak at rtt
 - stability implies average close to peak implies concavity
 - positive exponents imply lowered throughput trajectories can only go down large L_M implies low

Poincare Map and Lyapunov Exponent

individual flows

National Laboratory

U.S. Department of Energy

•

Instability shrinks concave region

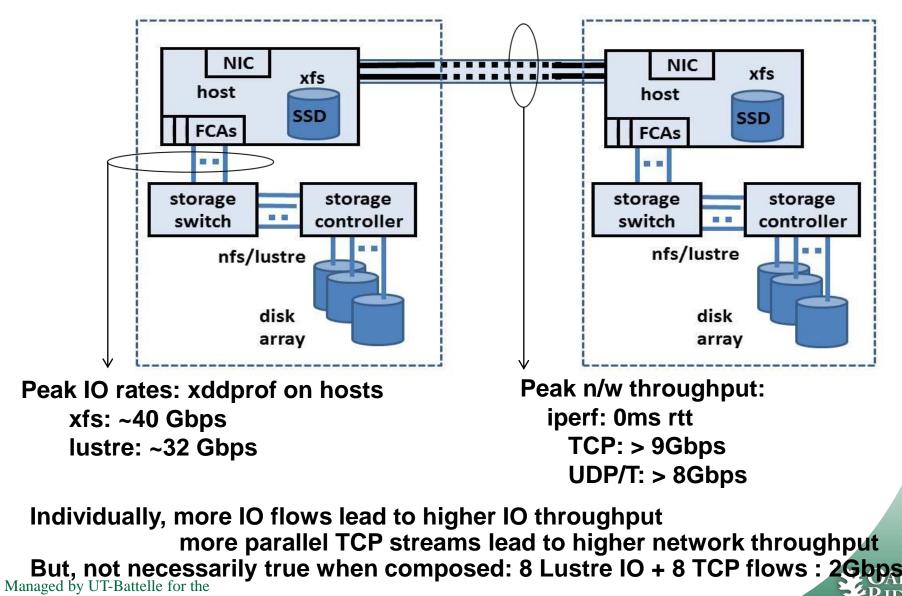
Two protocols P_1 and P_2 with Lyapunov exponents L_1 and L_2

Consider $L_1 > L_2$

Trajectories of P_1 deviate faster than those of P_2 both operating at peak which implies $\overline{\theta}_s^1 \le \overline{\theta}_s^2$

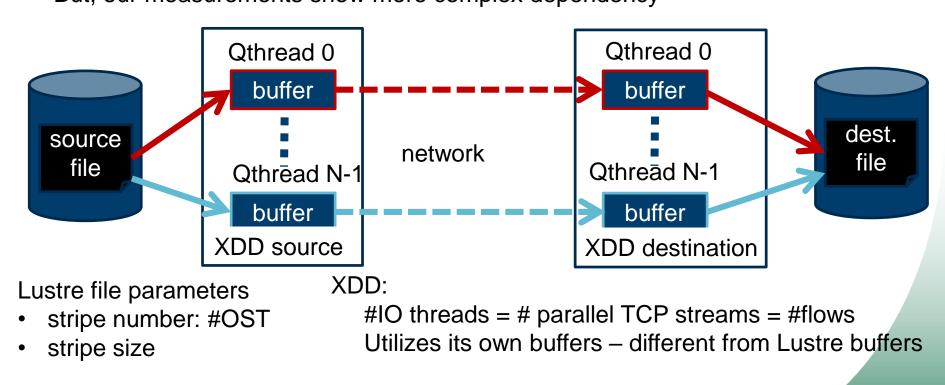
For fixed $\overline{\theta}_{s}$ we have $\frac{\partial \Theta_{o}}{\partial \tau} = -\frac{\partial f_{R}}{\partial \tau} (\overline{\theta}_{s} - \overline{\theta}_{R})$ since $\frac{\partial f_{R}}{\partial \tau} \ge 0$, concavity of Θ_{o} is equivalent to condition $(\overline{\theta}_{s} - \overline{\theta}_{R}) > 0$ for a fixed configuration, the condition $\overline{\theta}_{s}^{1} \le \overline{\theta}_{s}^{2}$ leads to $\{\tau : \overline{\theta}_{s}^{1} \ge \overline{\theta}_{R}\} \subseteq \{\tau : \overline{\theta}_{s}^{2} \ge \overline{\theta}_{R}\}$

which implies P_2 has larger concave region

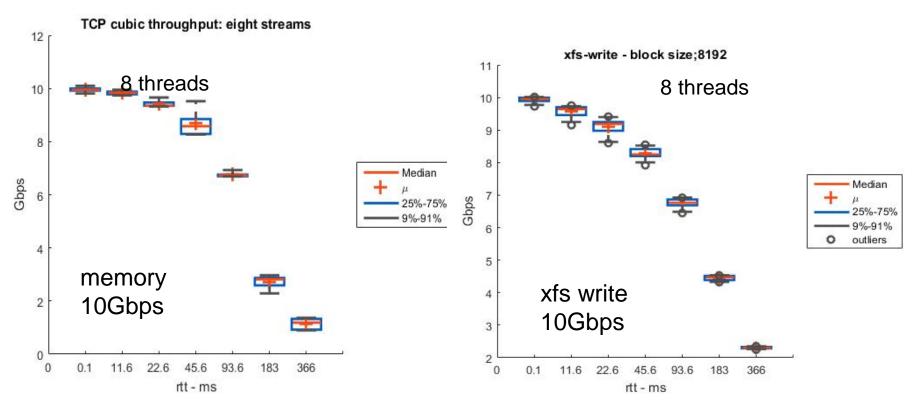

In general, stable throughput dynamics are highly desirable for achieving

(a) peak throughput, and (b) concave throughput profiles

Informally, both start at around peak, P_1 becomes lower faster - switches to convex compressing the concave region


Network and IO Systems: Wide-area file transfers involve complex systems

U.S. Department of Energy


XDD: host-to-host file transfer tool

- XDD uses parallel flows to move files
 - each flow is composed of
 - source IO/file flow + TCP flow + destination IO/file flow
 - data is read/written in blocks sizes 8k,65k, 148k
 Intuitively, more flows must provide high file transfer rate
 But, our measurements show more complex dependency

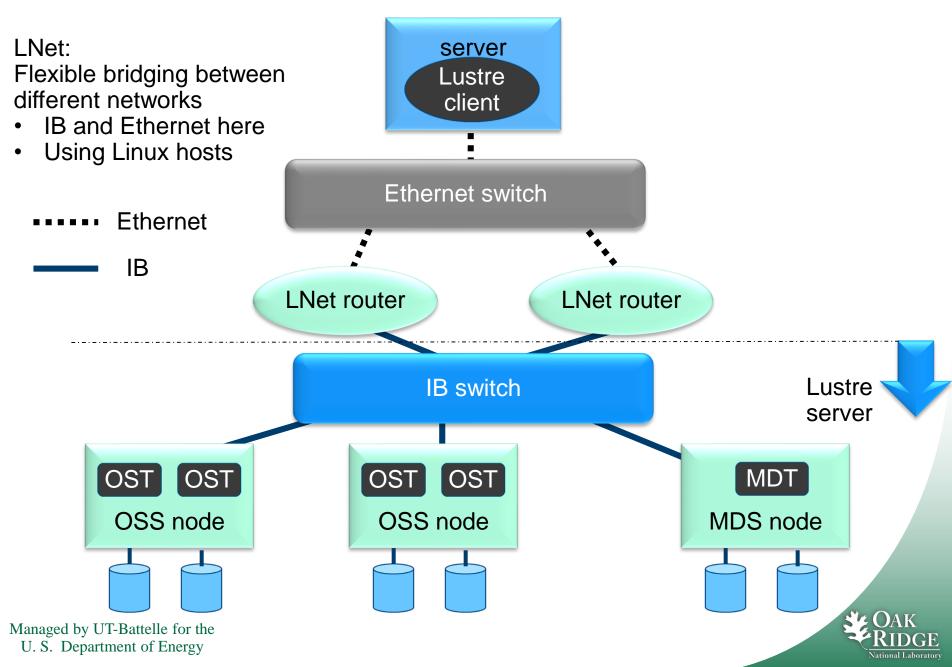
TCP CUBIC and xfs file systems

• xdd host-to-host file transfers: peak: 10Gbps

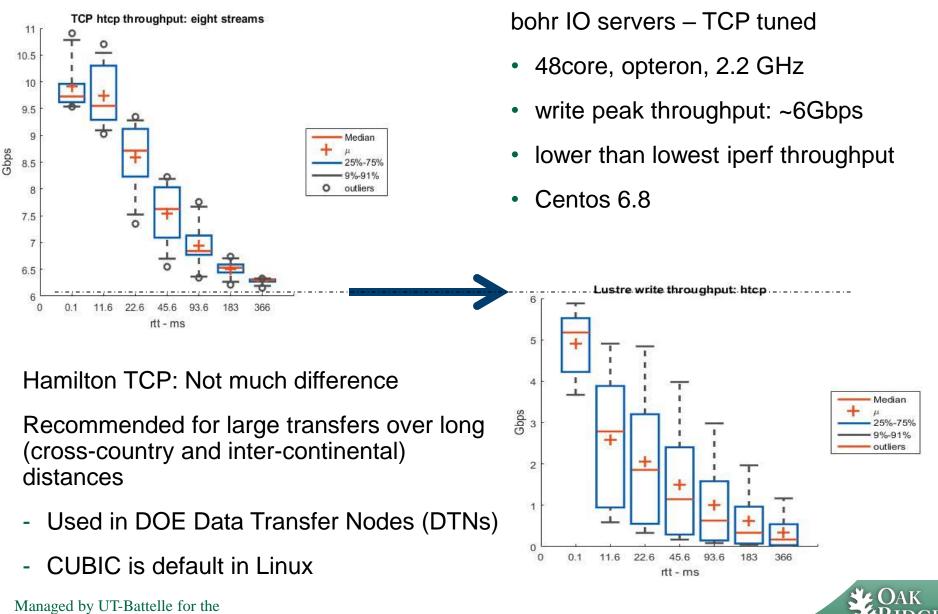
xdd file IO throughput is close to TCP throughput

- 8 IO threads and 8 TCP parallel streams
- Impedance mismatch is quite small

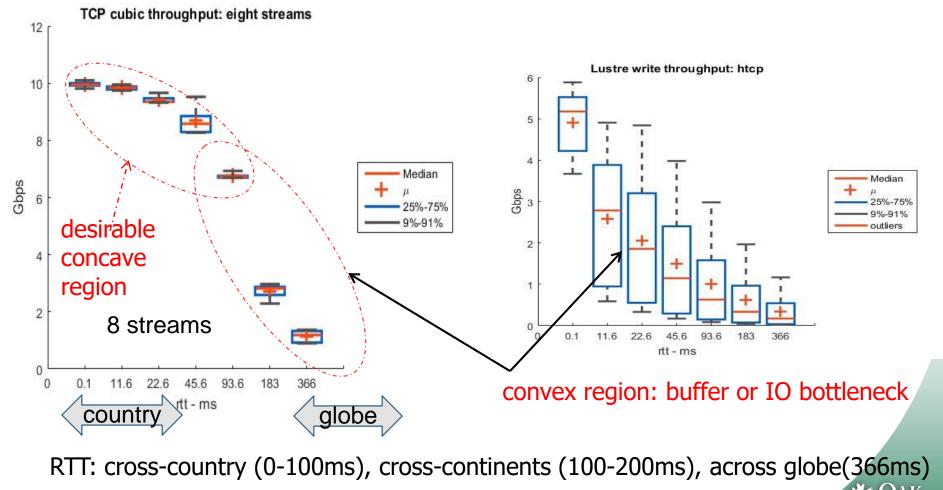
Lustre Over Wide-Area


Lustre distributed file system

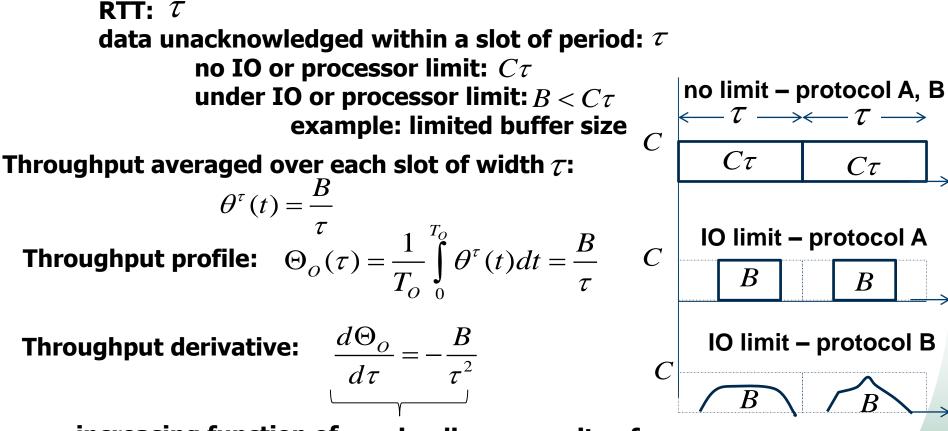
- Meta Data Servers (MDS)
- Object Storage Servers (OSS)
 - supported by one or more Object Storage Target (OST)
- High performance: parallelizing I/O from multiple clients to multiple OSTs: striped files
- Desired: Lustre mounted over wide-area
 - No need for transfer services such as GridFTP, Aspera, XDD and others
 - Easier application integration with remote file operations
- Current Installations
 - Majority: over site IB networks: Time-out limitation: 2.5ms
 - IB WAN extenders: too expensive and not flexible
- Solution: Lustre over Ethernet (not as widely deployed)
 - TCP/IP implementation: uses existing networks
 - Very little infrastructure enhancements needed



Lustre over IB-Ethernet: LNet routers


Lustre wide-area: bohr – Hamilton TCP

U.S. Department of Energy


IO or Network Bottleneck?

TCP memory transfers: concave-convex regions 10Gbps: CUBIC TCP buffers tuned for 200ms rtt Concave region: indicates buffer, IO bottleneck Our Lustre configuration indicates IO limit

Generic Model for Data, Disk and File Transfers

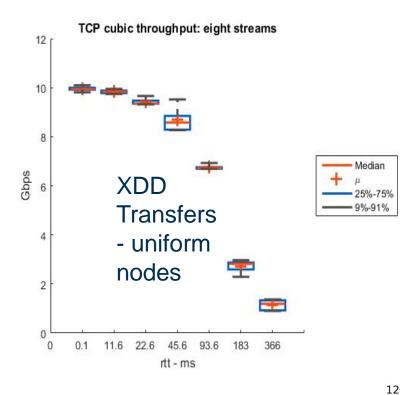
Buffer size, IO throughput or available processing power limit data in transit: connection capacity (bps): C

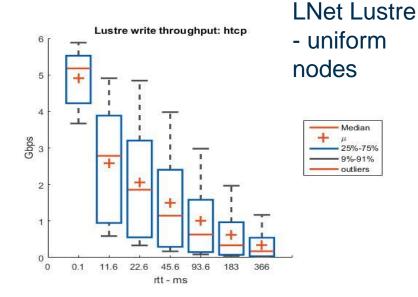
increasing function of τ implies convexity of $\Theta_{\alpha}(\tau)$

Transport methods may have different shapes of B – but subject to convexity

convex profile indicates disk or file throughput limit

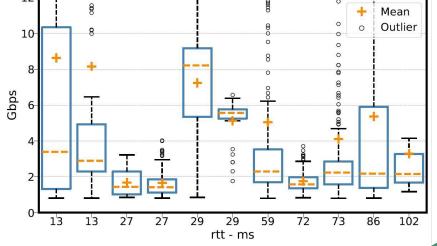
• due to peer credits on IB and Ethernet sides of LNet Managed by UT-Battelle for the U. S. Department of Energy


Data transfer infrastructures:

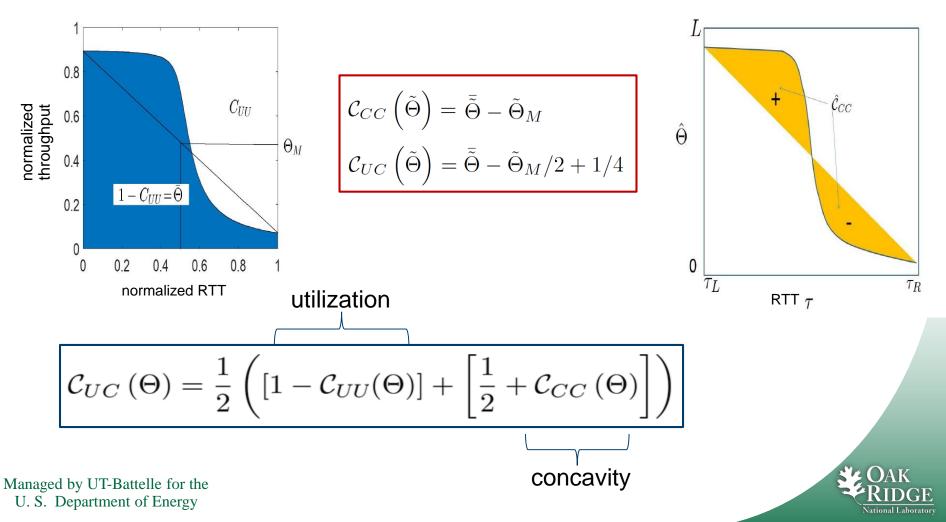

Sites vary: file system, transfer hosts, ... 183ms 105ms MT ME 54ms PNN OR V7 22ms ID WI NY ANL 67ms 29ms BNL łA NL I MD NCSA E DE 7<mark>3ms</mark> 13ms UT CO VA KS MO LBNEA **NERSC** ORNL 86ms OK AZ AR NM. SC MS GA AL TX 150, LA 366ms FL other AK HI)AK

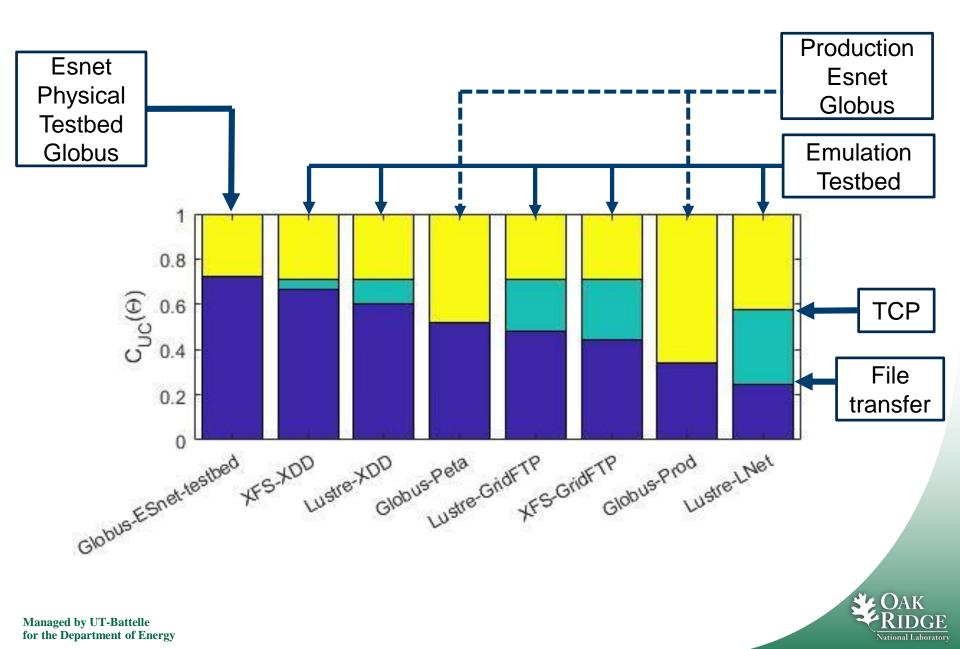
Managed by UT-Battelle for the Department of Energy

National Laboratory


Profiles of infrastructures

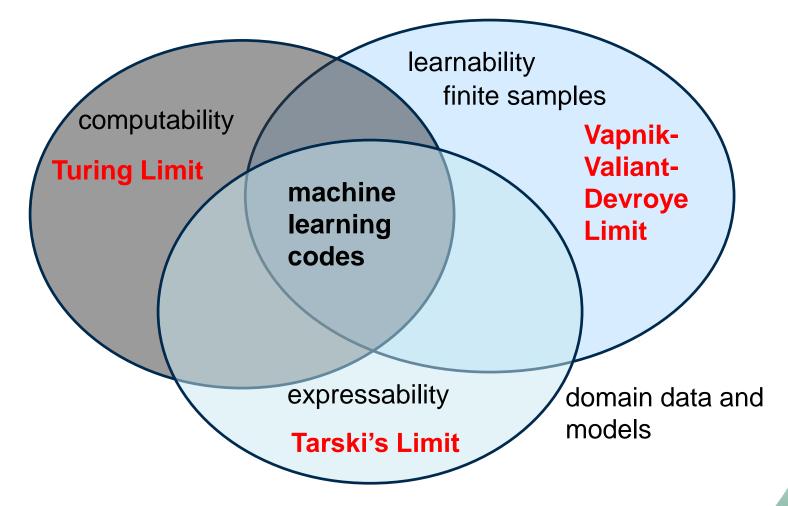
Globus file transfers


- production infrastructure
- site variations lead to complex profiles



Utilization-Concavity Coefficient

- Scalar $C_{UC} \in [0,1]$
 - Normalized with respect to throughput and rtt
 - Incorporates both concavity and utilization throughput profiles



Coefficient for 8 different transport infrastructures

Foundational Limits of Machine Learning Codes

Computations executed on machine with data and models

Throughput profiles have monotonicity properties: effectively learnable

Confidence Estimates

 $\theta(\tau,t)$: random with distribution $P_{\Theta_0(\tau)}$ that depends on

TCP version and parameters

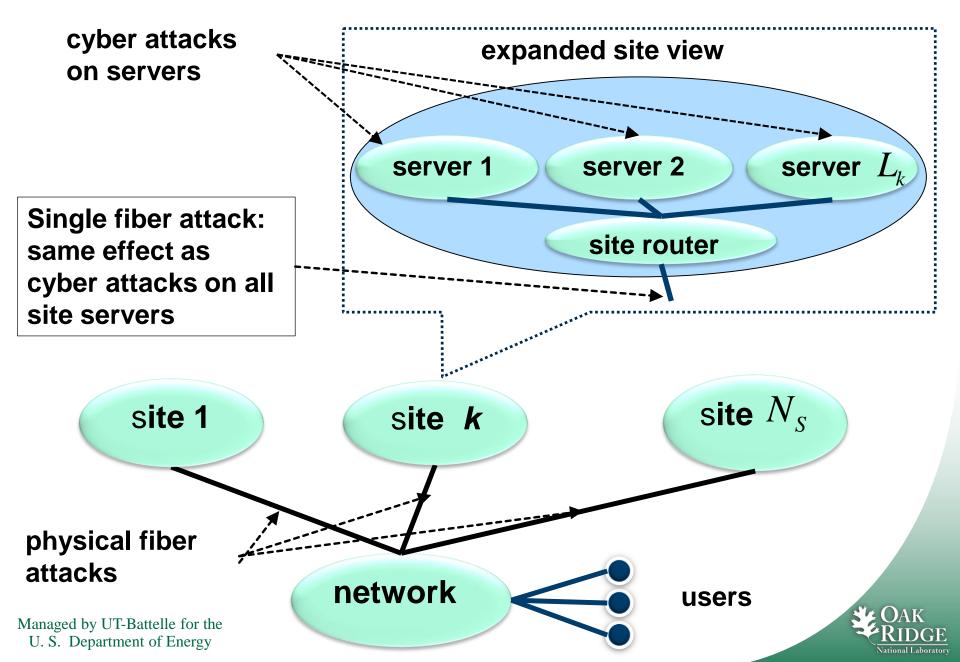
Gets

host and connection parameters

Profile regression: $\overline{\Theta}_{O}(\tau) = E[\Theta_{O}(\tau)] = \int \Theta_{O}(\tau) P_{\Theta_{O}(\tau)}$

Profile mean based on measurements: $\theta(\tau_k, t_i^k): k = 1, 2, \dots, n; i = 1, 2, \dots, n_k$

$$\hat{\Theta}_{O}(\tau_{k}) = \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \theta(\tau_{k}, t_{i}^{k}) \longleftarrow \text{machine learned profile}$$


National Laborator

Estimate of profile regression f chosen from class of monotone functions M TCP profile decreases with RTT Error of estimate $I(f) = \int [f(\tau) - \theta(\tau, t)]^2 P_{\theta(\tau, t)}$ Best estimate: $f^*: I(f^*) = \min_{f \in M} I(f)$

Linear interpolation based on profile mean is close to optimal probabilistically

$$P\left\{I(\hat{\Theta}_{O}) - I(f^{*}) > \in\right\} < \delta \qquad \delta = 32 \left(\frac{n}{\epsilon}\right)^{(1+C/\epsilon)\log_{2}(4\epsilon/C)} ne^{-\epsilon^{2}n/(2C)^{2}}$$
Gets better with more measurements
Managed by UT-Battelle for the
U. S. Department of Energy
$$Intuitively, \text{ profile is close to} \text{ optimal with high probability}$$

Multi-Site Cloud Computing Infrastructure

Infrastructure: Systems of Components

Consists of *N* individual systems: S_1, S_2, \ldots, S_N each system consists of cyber and physical components

- X_i :defenders investment in system in defending S_i example: number of reinforced components of S_i
- y_i :attackers investment in attacking system S_i

example: number of reinforced components of S_i

$$P_i$$
 :survival probability of system S_i
example: contest success function $P_i = \frac{x_i^m}{x_i^m + y_i^m}$

 $\begin{array}{l} P_I \hspace{0.5cm} : \hspace{0.5cm} \text{survival probability of multiple system infrastructure} \\ \hspace{0.5cm} \text{In general, it depends on:} \\ \hspace{0.5cm} \text{defenses} \hspace{0.5cm} x_1, x_2, L \hspace{0.5cm}, x_N \\ \hspace{0.5cm} \text{attacks} \hspace{0.5cm} y_1, y_2, L \hspace{0.5cm}, y_N \\ \hspace{0.5cm} \text{correlations} \\ \end{array}$

- Not flexible to capture varying complexities of systems U. S. Department of Energy

Defender Utility: General Form

Defender minimization utility function:

$$\begin{split} U_{D} \left(x_{1}, L , x_{N_{s}}, y_{1}, L y_{N_{s}} \right) \\ &= F_{D,G} \left(x_{1}, L , x_{N_{s}}, y_{1}, L y_{N_{s}} \right) G_{D} \left(x_{1}, L , x_{N_{s}}, y_{1}, L y_{N_{s}} \right) \quad [] - \text{ reward term} \\ &+ F_{D,L} \left(x_{1}, L , x_{N_{s}}, y_{1}, L y_{N_{s}} \right) L_{D} \left(x_{1}, L , x_{N_{s}} \right) \quad [] - \text{ cost term} \end{split}$$

Defender: reinforces

 x_i number of components reinforced of basic system S_i

Attacker:

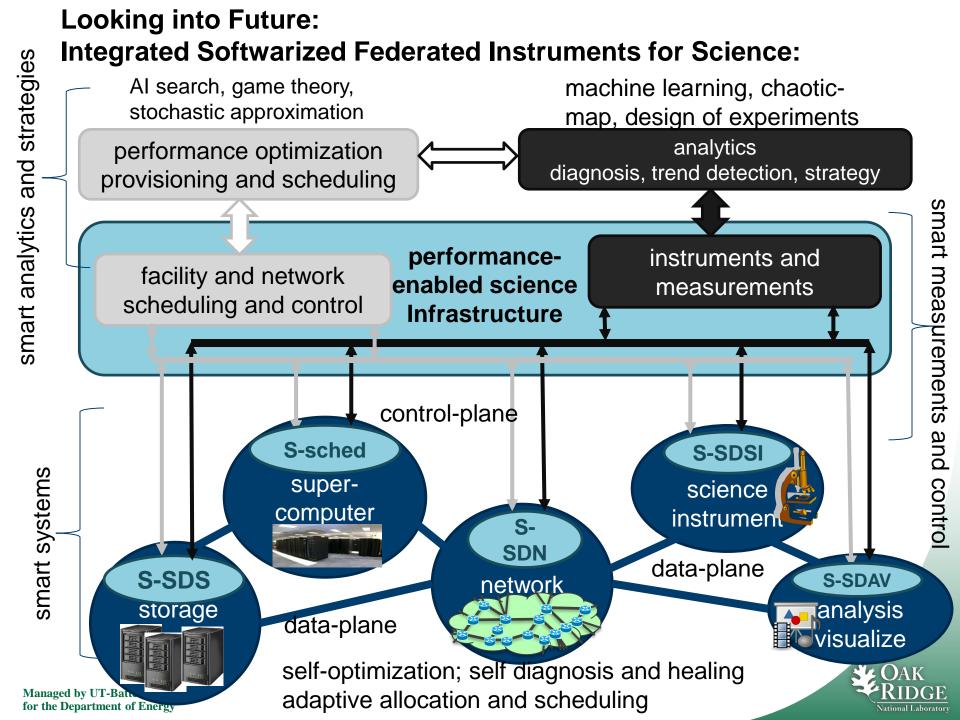
 y_i number of components attacked of basic system S_i

Infrastructure Survival Probability Estimate at Nash Equilibrium:

Defender's estimates of survival probability of system $S_b; b = 1, 2, L, N$

$$\hat{P}_{b;D} = \frac{\frac{\partial C_b}{\partial x_b} + \frac{F_{G,L}^{D,b}}{L_{G,L}^D}}{\frac{\partial C_b}{\partial x_b} - ((1 - C_b)\Lambda_b)}$$

Simple dependence on:


- correlation function:
 between systems
- multiplier function components within systems

under the condition: $C_b < 1$ or $\frac{\partial C_D}{\partial x_b} \neq 0$

Observations: Survival probability estimates depend

- gain-cost and gain-cost gradient
- aggregate correlation function and its derivative
- system multiplier functions

Looking into Future

Scientific Methods: important in design, analysis and optimization of data transport across time-space distance:

- Profile estimation and performance optimization
- Analytics, machine learning, measurements design, game theory, ...

Industry is developing powerful solutions

- Softwarization, virtualization, containerization, ...
- Transport tools, methods, TCP versions, UDP transport, ... But, their main targets are:
- Cloud computations with large number of users optical networks
- IOT with larger number of devices wireless networks

But, special infrastructures are outside industry's path

- Small number of large sources over optical networks
- Data transport, streaming, computational monitoring and steering, interactive remote experiments

Focused support needed

- will not happen as industrial by-products
- efforts similar to HPC systems needed to foster this area
 New science of data over time-space distance: components and infrastructures

Thank you

References

- N. S. V. Rao, C. Y. T. Ma, K. Hausken, F. He, D. K. Y. Yau, J. Zhuang, Defense strategies for asymmetric networked systems with discrete components, Sensors, vol. 18, 2018, pp. 1421.
- N. S. V. Rao, SDN solutions for switching dedicated long-haul connections: Measurements and comparative analysis, International Journal on Advances in Networks and Services, vol. 9, no. 3-4, 2016.
- 3. N. S. V. Rao, Q. Liu, S. Sen, R. Kettimuthu, J. Boley, B. W. Settlemyer and D. Katramatos, Regression-based analytics for response dynamics of SDN solutions and components, Workshop on Emerging Trends in Softwarized Networks (ETSN 2018), co-located with Netsoft2018, 2018.
- 4. Q. Liu, N. S. V. Rao, On concavity and utilization analytics of wide-area network transport protocols, IEEE International Conference on High Performance Computing and Communications, (HPCC), June 28-30, 2018.
- 5. Q. Liu, N. S. V. Rao, S. Sen, B. W. Settlemyer, H. B. Chen, J. Boley, R. Kettimuthu, and D. Katramatos, Virtual environment for testing software-defined networking solutions for scientic workows, Workshop on AI-Science -Autonomous Infrastructure for Science, in conjunction with HPDC, 2018.
- 6. 12. Z. liu, R. Kettimuthu, I. Foster, N. S. V. Rao, Cross-geography scientic data transfer trends and user behavior patterns, 27th ACM International Symposium on High Performance Parallel and Distributed Computing (HPDC), 2018.
- N. S. V. Rao, C. Y. T. Ma, F. He, On defense strategies for recursive system of systems using aggregated correlations, International Conference on Information Fusion, 2018.

References

- 1. N. S. V. Rao, N. Imam, J. Haley, S. Oral, Wide-Area lustre le system using LNet routers, 12th Annual IEEE International Systems Conference (SYSCON2018), 2018.
- N. S. V. Rao, C. Y. T. Ma, F. He, Defense strategies for multi-site cloud computing server infrastructures, 19th International Conference on Distributed Computing and Networking, (ICDCN 2018), 2018.
- 3. S. Sen, N. S. V. Rao, Q. Liu, N. Imam, I. Foster, R. Kettimuthu, Experiments and analyses of data transfers over wide-area dedicated connections, First International Workshop on Workow Science (WOWS), 2017.
- N. S. V. Rao, Q. Liu, S. Sen, J. Hanley, I. Foster, R. Kettimuthu, C. Q. Wu, D. Yun, D. Towsley, G. Vardoyan, Experiments and analyses of data transfers over wide-area dedicated connections, The 26th International Conference on Computer Communications and Networks (ICCCN 2017), 2017.
- N. S. V. Rao, Q. Liu, S. Sen, D. Towsley, G. Vardoyan, R. Kettimuthu, I. Foster, TCP throughput proles using measurements over dedicated connections, 26th ACM International Symposium on High Performance Parallel and Distributed Computing (HPDC), 2017.
- N. S. V. Rao, N. Imam, C. Y. T. Ma, K. Hausken, F. He, J. Zhuang, On defense strategies forsystem of systems using aggregated correlations, 11th Annual IEEE International Systems Conference(SYSCON2017), 2017.
- N. S. V. Rao, Q. Liu, S. Sen, G. Hinkel, N. Imam, I. Foster, R. Kettimuthu, B. Settlemyer, C. Q. Wu, D. Yun, Experimental analysis of le transfer rates over wide-area dedicated connections, 18th IEEE International Conference on High Performance Computing and Communications (HPCC), 2016.

